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ABSTRACT

Eklof and Shelah [8] call an abelian group absolutely indecomposable

if it is directly indecomposable in every generic extension of the universe.

More generally, we say that an R-module is absolutely rigid if its en-

domorphism ring is just the ring of scalar multiplications by elements of

R in every generic extension of the universe. In [8] it is proved that there

do not exist absolutely rigid abelian groups of size ≥ κ(ω), where κ(ω)

is the first ω-Erdős cardinal (for its definition see the introduction). A

similar result holds for rigid systems of abelian groups. On the other

hand, recently Göbel and Shelah [15] proved that for modules of size

< κ(ω) this phenomenon disappears. Their result on Rω-modules (i.e.

on R-modules with countably many distinguished submodules) that es-

tablishes the existence of ‘well-behaving’ fully rigid systems of abelian

groups of large sizes < κ(ω) will be extended here to a large class of R-

modules by proving the existence of modules of any sizes < κ(ω) with

endomorphism rings which are absolute. In order to cover rings as general

as possible, we utilize a method developed by Brenner, Butler and Corner

(see [2, 3, 5]) to reduce the number of distinguished submodules required

in the construction from ℵ0 to five.

We give several applications of our results. They include modules over

domains with four pairwise comaximal prime elements, and modules over

quasi-local rings whose completions contain at least five algebraically in-

dependent elements.

1. Introduction

A module M (over any ring R) is said to be absolutely indecomposable if it

is indecomposable in every generic extension of the universe. Filling a gap in [8]

and in Eklof–Mekler [7, pp. 487–492], Göbel and Shelah [15] have established

the existence of absolutely indecomposable abelian groups of any size < κ(ω).

They also proved similar results for modules over domains R by constructing

modules whose endomorphism rings are isomorphic to R and are absolute in

the sense that they do not change under generic extensions of the universe.

We wish to extend their results to modules over various classes of commutative

rings R as well as to modules with prescribed endomorphism algebras over

such rings by establishing the existence of R-modules with various absolute

endomorphism rings. Our starting point is the main theorem on Rω-modules in

[15], which was derived by encoding absolutely rigid valuated trees from Shelah

[18] into modules; see Theorem 2.1 below.
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Let κ be a (finite or infinite) cardinal and R a commutative ring with 1 6= 0.

(A cardinal κ is viewed as the set of all ordinals α < κ; in particular, 5 =

{0, 1, 2, 3, 4}.) We first recall the definition of Rκ-modules. An Rκ-module X

is an R-module X along with a family of R-submodules Xi (i < κ); in notation:

X = (X,Xi | i < κ). Furthermore, X is a free Rκ-module if X,Xi, X/Xi (i <

κ) are all free R-modules. If X and Y = (Y, Yi | i < κ) are Rκ-modules, then ϕ

is an Rκ-homomorphism, ϕ ∈ HomR(X,Y), if ϕ ∈ HomR(X,Y ) and Xiϕ ⊆ Yi

for all i < κ. We also write HomR(X,X) = EndR X.

A fully rigid system ofRκ-modules on the cardinal λ is a family FU (U ⊆ λ)

of Rκ-modules (with U running over the subsets of λ) of cardinality ≤ λ such

that the following holds for subsets U, V of λ:

HomR(FU ,FV ) =




R if U ⊆ V

0 if U 6⊆ V.

If R on the right is replaced by an R-algebra A, then we say that this family

is a fully A-rigid system of Rκ-modules.

Surprisingly the first ω-Erdős cardinal κ(ω) is the crucial borderline for our

algebraic results on Rω-modules. This large cardinal may not exist in any model

of set theory, but if it exists, then it does also in L (see [18]). It is defined as the

smallest cardinal κ such that κ → (ω)<ω holds, i.e., for every function f from

the finite subsets of κ to 2 there exist an infinite subset X ⊂ κ and a function

g : ω → 2 such that f(Y ) = g(|Y |) holds for all finite subsets Y of X . The

cardinal κ(ω) is known to be strongly inaccessible; see Jech [16, p. 303].

Now we quote the Main Theorem 4.1 from [15].

Theorem 1.1: Let R be any commutative ring with 1 6= 0 and λ a cardinal

such that λ, |R| < κ(ω). There exists a fully rigid system FU (U ⊆ λ) of free

Rω-modules with the following properties:

(i) F is of rank λ and FU = (F, FU , Fi | 0 6= i ∈ ω) (thus only F0 := FU

depends on U).

(ii) The family FU (U ⊆ λ) is absolutely fully rigid, i.e., even if the given

universe is replaced by a generic extension, the family stays fully rigid.

Remark 1.2: We will write F =
⊕

j<λ Rhj for the free R-module above and

similarly FU =
⊕

j∈U Rhj as in [15].
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We begin our discussion with Rω-modules and will continue with R5-modules

by making use of a method developed by Brenner, Butler and Corner (see

[2, 3, 5]) and utilized by Franzen–Göbel [9, 12] to reduce the number of modules

required in the construction from countably many to five (see Theorem 3.2). Our

results extend easily to cover modules over faithful R-algebras A; cf. Theorem

4.2.

We conclude the paper with a few applications; see Section 5 below. In these

applications the role of distinguished submodules is played by fully invariant

submodules that have to be chosen appropriately. The Main Theorem 4.1 in

[15] was stated such that it is readily applicable to our situation.

We would like to thank the referee for various very helpful comments.

2. The link to valuated trees and results above and below the border

line κ(ω)

For an infinite cardinal λ, Tλ = ω>λ will denote the tree whose n-th level consists

of all finite sequences f : n → λ (n ∈ ω), and which is partially ordered in the

obvious way. By a subtree T we mean a subset closed under initial segments.

A homomorphism between two trees is a map that preserves both levels and

initial segments. A tree T together with a map v : T −→ ω is an ω-valuated

tree (also called ω-colored tree) and a valuated homomorphism ϕ : T1 −→ T2

between two valuated trees with valuations vi (i = 1, 2) is a tree homomorphism

which preserves valuations, i.e. v2(ηϕ) = v1(η) for all η ∈ T1. By Hom(T1, T2)

we denote the collection of valuated homomorphisms T1 −→ T2.

Our starting point, Theorem 1.1, is based on an interesting result about

absolutely rigid, valuated trees by Shelah [18].

Theorem 2.1: Let λ < κ(ω) be a cardinal. There is a family Tα (α ∈ 2λ) of

valuated subtrees (of size λ) in Tλ = ω>λ such that in any generic extension of

the universe the following holds for α, β ∈ 2λ

Hom(Tα, Tβ) 6= ∅ =⇒ α = β.

The following remarks are inserted here to clarify absoluteness. A first order

formula ϕ(x, y) is called absolute if the following holds. If M2 is a model of set

theory, that is an end-extension (i.e. no new elements are added to a set; see [16,

p. 654]) of a countable model M1 of ZFC and x, y ∈M1, then M1 � ϕ(x, y) (is
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satisfied) if and only if M2 � ϕ(x, y). Levi established a criterion for (bounded)

formulas to be absolute; this is useful in showing that several statements are

absolute; cf. Burgess [4, p. 409] and [4, p. 408, Lemma 1.1 and Section 1.5] for

its consequences. It follows, e.g., that being an ordinal or a cub is absolute,

but neither being a powerset, nor a stationary set is absolute. See also the

connection with the language L∞ω (the closure of atomic formulas under nega-

tion, arbitrary conjunctions and disjunctions over finitely many variables and

under existential and universal quantifications of individual variables) in [8, p.

259–260]. Along these lines (using arguments by Silver) it follows that Shelah’s

chain of trees constitutes an absolutely rigid family of trees. Moreover, the same

holds for the modules (as in [15]) with distinguished submodules derived from

these trees. However, rigid families of ℵ1-free families of abelian groups (for

example) of cardinality ℵ1 are not absolute, because by cardinal collapsing they

can be made countable, and hence free in a suitable model of ZFC. Thus small

rigid families can only be used to get large absolute families (as in Section 5)

if they remain (absolutely) rigid. In contrast to absolute properties of modules

we now quote from Eklof–Shelah [8] (see also [18]) the following striking results

(whose proofs are surprisingly not so complicated as expected).

The stated property of rigid families of trees in Theorem 2.1 fails when-

ever λ ≥ κ(ω), i.e. for any family Tα (α < λ) of valuated subtrees there are

a generic extension of the universe and distinct ordinals α, β < λ such that

Hom(Tα, Tβ) 6= ∅. In fact, the arguments in [8] apply to any family of struc-

tures, so their results can be applied to R-modules. Consequently, we can just

quote without proofs

Theorem 2.2 (Eklof–Shelah [8]): Let λ be a cardinal ≥ κ(ω) and {Mν : ν < λ}

a family of non-zero left R-modules, R any ring with 1. Then there are distinct

ordinals α, β < λ, such that in some generic extension V [G] of the universe V ,

there is an injective homomorphism φ : Mα →Mβ .

Theorem 2.3 (Eklof–Shelah [8]): Let κ be a cardinal ≥ κ(ω) and M an R-

module of cardinality κ, where R is any commutative ring with 1 such that

κ > |R|. Then there exists a generic extension V [G] of the universe V , such

that M has an endomorphism (actually also a monomorphism) that is not

multiplication by an element of R.
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Thus, if we wish to construct R-modules with absolute endomorphism rings

R, then we should restrict the size of modules under consideration to cardinals

below κ(ω).

3. Reduction to five distinguished submodules

It is a remarkable fact that the results in Theorem 1.1 hold even if the category

of Rω-modules is replaced by the category of R5-modules. This is an important

advantage in applications. In order to justify this reduction, we apply results

and methods developed in [2, 3, 5].

Let R be a commutative ring with 1 6= 0, and let

E = Re1 ⊕Re2 ⊕Re3 and G =
⊕

n<ω

Rgn

be free R-modules with generators e1, e2, e3 and gn (n < ω), respectively. In

the tensor product E ⊗R G choose four distinguished submodules

W 1 = Re1 ⊗G, W 2 = Re2 ⊗G, W 3 = Re3 ⊗G

and W 4 = R(e1 + e2 + e3) ⊗G.

Furthermore, let ρ, σ : ω −→ ω be two order preserving maps such that

(i) Imσ ⊂ Im ρ,

(ii) Im ρ \ Imσ is infinite,

(iii) jump condition: [σ(k), σ(k) + k] ∩ Im ρ = {σ(k)} for all k < ω,

where [σ(k), σ(k) + k] denotes the interval {n < ω : σ(k) ≤ n ≤ σ(k) + k}. It

is easy to construct the functions ρ and σ by induction; the pair ρ, σ remains

fixed in what follows. By making use of these functions, we define two additional

submodules:

W 0 =
⊕

i<ω

R(e1 ⊗ gi + e2 ⊗ gi+1) ⊕
⊕

i<ω

R(e3 ⊗ gσ(i)) ⊆ E ⊗G

and

W ′0 =
⊕

i<ω

R(e1 ⊗ gi + e2 ⊗ gi+1) ⊕
⊕

i<ω

R(e3 ⊗ gρ(i)) ⊆ E ⊗G.

From condition (i) we obtain W 0 ⊆ W ′0, while (ii) implies that W ′0/W 0 is a

free R-module of countable rank.
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We start with the following lemma, using the six submodules of E ⊗ G just

introduced; its proof is a modification of the proof of Proposition 3.1 in Göbel

[12]. (We are going to use only conditions (i) and (iii).)

Lemma 3.1: Let R 6= 0 be a commutative ring, and let X,Y be R-modules.

Then the R5-modules

CX = (CX = E ⊗G⊗X, Cj
X = W j ⊗X | j = 0, 1, 2, 3, 4),

C′
Y = (C′

Y = E ⊗G⊗ Y, C′0
Y = W ′0 ⊗ Y, C′j

Y = W j ⊗ Y | j = 1, 2, 3, 4)

satisfy

HomR(CX ,C
′
Y ) = 1E ⊗ 1G ⊗ HomR(X,Y ).

Proof. In order to verify the last equality, it is enough to show that the left

hand side is contained in the right hand side. So assume φ ∈ HomR(CX ,C
′
Y ).

From the invariance of the subspaces W j (j = 1, 2, 3, 4) we conclude that there

exist φj ∈ HomR(G⊗X,G⊗ Y ) (j = 1, 2, 3, 4) such that

(ej ⊗ g ⊗ x)φ = ej ⊗ (g ⊗ x)φj , j = 1, 2, 3

and

[(e1 + e2 + e3) ⊗ g ⊗ x]φ = (e1 + e2 + e3) ⊗ (g ⊗ x)φ4

for all g ∈ G, x ∈ X . Comparison yields φ1 = φ2 = φ3 = φ4 = φ′, thus

φ = 1E ⊗ φ′ with φ′ ∈ HomR(G⊗X,G⊗ Y ).

We note that

W ′0 ∩ (W 1 ⊕W 2) = W 0 ∩ (W 1 ⊕W 2) =
⊕

j<ω

R(e1 ⊗ gj + e2 ⊗ gj+1),

and therefore, for x ∈ X we have (e1⊗gi+e2⊗gi+1)⊗x ∈ (W 0∩(W 1⊕W 2))⊗X

and

e1 ⊗ (gi ⊗ x)φ′ + e2 ⊗ (gi+1 ⊗ x)φ′ ∈
⊕

j<ω

R(e1 ⊗ gj + e2 ⊗ gj+1) ⊗ Y.

We also note that G ⊗X =
⊕

i<ω Rgi ⊗X and G ⊗ Y =
⊕

i<ω Rgi ⊗ Y . For

all i, j < ω, there exists a map φij ∈ HomR(X,Y ) such that

(gi ⊗ x)φ′ =
∑

j<ω

(gj ⊗ xφij).
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Hence there are elements yij ∈ Y (i, j < ω) such that

e1 ⊗
∑

j<ω

(gj ⊗ xφij) + e2 ⊗
∑

j<ω

(gj ⊗ xφi+1,j)

= e1 ⊗ (gi ⊗ x)φ′ + e2 ⊗ (gi+1 ⊗ x)φ′

=
∑

j<ω

(e1 ⊗ gj + e2 ⊗ gj+1) ⊗ yij

=
∑

j<ω

(e1 ⊗ gj) ⊗ yij +
∑

j<ω

(e2 ⊗ gj+1) ⊗ yij .

We get
∑

j<ω

(e1⊗gj)⊗(xφij−yij)+
∑

j≥1

(e2⊗gj)⊗(xφi+1,j−yi,j−1)+(e2⊗g0)⊗xφi+1,0 = 0,

whence equating coefficients we obtain xφij = yij , xφi+1,j = yi,j−1 (j > 0) and

also xφi0 = 0 (i ≥ 1). It follows that xφij = xφi+1,j+1, whence gj ⊗ xφij =

gj ⊗ xφ0,j−i whenever j ≥ i; also xφij = 0 if j < i. There is a k < ω such that

(gi ⊗ x)φ′ =
∑

j<ω

gj ⊗ xφij =
∑

j≤k

gi+j ⊗ xφ0j .(3.1)

We now keep the element x ∈ X fixed and note that in view of the definition

of φ′ the set {j < ω : xφ0j 6= 0} must be finite. Thus k in the formula (3.1) is

the largest element of this set and does not depend on i.

Finally, we observe that

W ′0 ∩W 3 =
⊕

i<ω

R(e3 ⊗ gρ(i)) and W 0 ∩W 3 =
⊕

i<ω

R(e3 ⊗ gσ(i)),

thus, for each k < ω, e3 ⊗ gσ(k) ⊗ x ∈W 0 ∩W 3 ⊗X and

(e3 ⊗ gσ(k) ⊗ x)φ ∈
⊕

i<ω

R(e3 ⊗ gρ(i)) ⊗ Y.

If we pick k as in equation (3.1), then we can find elements yj ∈ Y such that

e3 ⊗
∑

j<ω

(gρ(j) ⊗ yj) = (e3 ⊗ gσ(k) ⊗ x)φ = e3 ⊗ (gσ(j) ⊗ x)φ′

= e3 ⊗
∑

j≤k

(gσ(k)+j ⊗ xφ0j).

We have
∑

j<ω gρ(j) ⊗ yj =
∑

j≤k gσ(k)+j ⊗ xφ0j , and by the jump condition

(iii) it follows that xφ0i = 0 for 1 ≤ i ≤ k. Hence also xφ0i = 0 for all x ∈ X .
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We get φ0i = 0 for all 0 6= i < ω, and if we put φ00 = ψ, then we obtain

(gi ⊗ x)φ′ = gi ⊗ xψ and φ = 1E ⊗ 1G ⊗ ψ, as desired.

For a cardinal λ < κ(ω), consider the (fixed) fully rigid system

FU = (F, F0 = FU , Fi | 0 < i < ω)

of Rω-modules (with U ⊆ λ) whose existence is guaranteed by Theorem 1.1,

where R 6= 0 is any commutative ring with |R| < κ(ω). For each U ⊆ λ, we

define an R5-module

NU = (N,N0 = NU , Nj | j = 1, 2, 3, 4)

in the following way.

Let E,G be free R-modules as defined above, and let

N = E ⊗G⊗ F

with the following five distinguished submodules. Choose an infinite set B =

{ri : i < ω} ⊂ Im ρ \ Imσ, and set

Nj = W j ⊗ F, j = 1, 2, 3, 4

and

NU =
⊕

i<ω

(R(e1⊗gi+e2⊗gi+1)⊗F )⊕
⊕

i<ω

(R(e3⊗gσ(i))⊗F )⊕
⊕

i<ω

(R(e3⊗gri
)⊗Fi).

Thus we have the inclusion relations W 0 ⊗ F ⊂ NU ⊂W ′0 ⊗ F .

We would like to point out that all crucial information about rigidity of the

R5-modules just constructed is hidden in the first invariant submodule N0. This

is reflected in the proof of our next claim.

Theorem 3.2: Assume R 6= 0 is a commutative ring and λ a cardinal such that

|R| ≤ λ < κ(ω). Let NU = (N,Nj | j = 0, 1, 2, 3, 4) (U ⊆ λ) (with N0 = NU )

be a set of R5-modules just defined. If X,Y are any faithful R-modules, then

in any generic extension of the universe

HomR(NU ⊗X,NV ⊗ Y ) =





1U ⊗ Hom(X,Y ) if U ⊆ V

0 if U 6⊆ V.

Proof. We consider an arbitrary R5-homomorphism χ : NU ⊗X → NV ⊗ Y ,

where U, V ⊆ λ. Thus χ : E ⊗ G ⊗ F ⊗ X → E ⊗ G ⊗ F ⊗ Y satisfies

(Nj ⊗X)χ ⊆ Nj ⊗ Y for j = 1, 2, 3, 4 and (NU ⊗X)χ ⊆ NV ⊗Y . An appeal to
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Lemma 3.1 where we let X be F ⊗X and Y be F ⊗Y shows that χ = 1E⊗G⊗ϕ,

where ϕ ∈ Hom(F ⊗X,F ⊗ Y ). Next we exploit the special choice of NU and

NV , respectively. It follows that (e3 ⊗ gri
⊗ Fi ⊗X)χ ⊆ (e3 ⊗ gri

⊗ Fi ⊗ Y ) for

all i < ω. Thus Fi ⊗X is mapped by ϕ into Fi ⊗Y for each i < ω; equivalently,

ϕ is an Rω-homomorphism

(F ⊗X,F0 ⊗X = FU ⊗X,Fi ⊗X | 0 < i < ω) →

(F ⊗ Y, F0 ⊗ Y = FU ⊗ Y, Fi ⊗ Y | 0 < i < ω).

The conclusion now follows at once from Theorem 1.1.

In the important special case X = Y = R, we have

Corollary 3.3: For every commutative ring R 6= 0 and for every cardinal

λ < κ(ω) with |R| ≤ λ, there exists an R5-module M of cardinality λ such that

EndM = R in every generic extension of the universe.

Proof. This follows from the preceding theorem. Indeed, let M = NU ⊗ R;

then by the theorem EndM = Hom(R,R) and Hom(R,R) = R in any generic

extension of the universe.

In particular, if R = K is a field, then (with the choice X ∼= K) the preceding

result confirms the existence of absolutely indecomposable K5-vector spaces of

sizes < κ(ω). It is likely that the same holds for K4-vector spaces, but it

is certain that the result cannot be improved to K3-vector spaces. Indeed,

K3-vector spaces are of finite representation type (see Simson [20]), and from

a theorem by Ringel–Tachikawa [17] (see also Simson [19]) it follows that all

infinite dimensional K3-vector spaces decompose; cf. also Böttinger-Göbel [1,

Theorem 4.1].

4. Extension to R-algebras

Our next purpose is to extend the results from R-modules to A-modules, where

A is an R-algebra. We are going to apply a well-known method to construct a

particular R-module X∗ which encodes scalar multiplications by elements from

A, see [2, 3]. We will adjoin this additional distinguished submodule to the

countably many distinguished submodules considered so far. It will guarantee

that the R-homomorphisms will become automatically A-homomorphisms.
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Lemma 4.1: Let κ ≤ λ be cardinals and A be an R-algebra which is generated

by at most κ elements (as an algebra) and let X,Y be (right) A-modules. If

H is a free R-module of rank λ, then there are submodules X∗ ⊆ H ⊗X and

Y ∗ ⊆ H ⊗ Y , R-isomorphic to
⊕

κX and
⊕

κ Y , respectively, such that

HomA(X,Y ) =
{
ϕ ∈ HomR(X,Y ) : X∗(1H ⊗ ϕ) ⊆ Y ∗

}
.

Proof. Let {ai : i < κ} be a set generating A as an R-algebra. Choose two

disjoint subsets of the free generators of H of size κ and label these elements as

hi, h
′
i (i < κ). If i < κ, then Xi := {hi ⊗ x + h′i ⊗ xai : x ∈ X} is a summand

of H ⊗ X isomorphic to X , hence X∗ =
⊕

i<κXi is a canonical summand of

H ⊗X which is isomorphic to
⊕

κX . Similarly we define Y ∗ as a submodule

of H ⊗ Y .

If ψ ∈ HomA(X,Y ), then it is immediate that X∗(1H ⊗ ψ) ⊆ Y ∗. It re-

mains to show that any ϕ ∈ HomR(X,Y ) with X∗(1H ⊗ ϕ) ⊆ Y ∗ is an A–

homomorphism. For x ∈ X we can find y ∈ Y such that

(hi ⊗ x+ h′i ⊗ xai)(1H ⊗ ϕ) = hi ⊗ (xϕ) + h′i ⊗ (xai)ϕ = hi ⊗ y + h′i ⊗ yai.

Thus xϕ = y, (xai)ϕ = yai = (xϕ)ai for all i < κ, and ϕ is an A-homomor-

phism.

Using R5–modules in place of R–modules we are able to adopt arguments

from [9] which were used for the construction of indecomposable modules by

the Shelah elevator, see also [2, 3, 5] for related arguments. The following

theorem will become a consequence of Theorem 1.1 and Lemma 4.1. Observe

that we will consider R-homomorphisms between A-modules. The preceding

lemma will be used to represent R-algebras A which are generated by κ (≤ λ)

elements. We combine it with Theorem 1.1 and Lemma 3.1.

First, we construct theR5-modules we will need in Theorem 4.2. Let λ < κ(ω)

and U ⊆ λ a subset of λ. Then we fix F =
⊕

i<λ Rhi from Remark 1.2 and

choose FU =
⊕

i∈U Rhi ⊆ F . If X is a module over the R-algebra A, then we

define the R5-module

MUX = (MX ,M
0
UX ,M

j
X : 1 ≤ j ≤ 4)

by making use of the modules in Lemma 3.1 as follows. Set

MX = E ⊗G⊗ (F ⊗X) and M j
X = W j ⊗ (F ⊗X) for j = 1, 2, 3, 4.
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(Recall from Section 3 that W j ⊆ E ⊗ G.) It remains to define M0
X . By the

definitions of W 0 and W ′0 we have W ′0 = W 0 ⊕ C ⊆ E ⊗ G for some free

R-module C of countable rank (recall condition (ii) in Section 2). Thus with

an ∈ E,b1, b2 ∈ E ⊗G and G′ ⊆ G we can write

C =
⊕

n<ω

(Ran ⊗G′) ⊕Rb1 ⊕Rb2,

where G′ is a copy of G (because the displayed module has only countable

rank). If σ : G −→ G′ is an R-isomorphism, then the isomorphism σ′ =

σ ⊗ 1F : G ⊗ F −→ G′ ⊗ F turns F ′ := G′ ⊗ F into an Rω-module using

F ′
i := (G⊗ Fi)σ

′ as the distinguished submodules coming from Theorem 1.1.

Now we define M0
X such that M0

X ⊆ M0
UX ⊆ M ′0

X . Consider M0
X :=

W 0 ⊗ F ⊗X , and let

M ′0
X := M0

X ⊕ (C ⊗ F ⊗X).

We now set

(4.1) M0
UX = M0

X ⊕
⊕

i<ω

(Rai ⊗ F ′
i ⊗X) ⊕Rb1 ⊗X∗ ⊕Rb2 ⊗ FU ⊗X

(where X∗ ⊆ F ⊗ X comes from Lemma 4.1 (for F = H) and the summand

in brackets in (4.1) is a submodule of C ⊗ F ⊗ X); thus M0
X ⊆ M0

UX ⊆ M ′0
X

follows. If Y is another A-module and V ⊆ λ, then

ϕ ∈ Hom(MUX ,MV Y )

is an R–homomorphism E⊗G⊗F⊗X −→ E⊗G⊗F⊗Y such that M j
Xϕ ⊆M j

Y

for j = 1, 2, 3, 4 and M0
Xϕ ⊆ M ′0

Y . (Note that we provided enough space in

M ′0
Y to ensure that the last inclusion holds.) By Lemma 3.1 there is ψ ∈

HomR(F ⊗X,F ⊗ Y ) such that ϕ = 1E⊗G ⊗ ψ. From G′ ⊆ G it follows

(G′ ⊗ F ⊗X)ϕ = (G′ ⊗ F ⊗X)(1E⊗G ⊗ ψ) = G′ ⊗ (F ⊗X)ψ ⊆ G′ ⊗ F ⊗ Y.

Hence (F ′
i ⊗ X)ϕ ⊆ F ′

i ⊗ Y for all n < ω. Now Theorem 1.1 applies to ϕ′ =

ϕ �G′ ⊗ F ⊗ X and ϕ′ = 1G′⊗F ⊗ ψ′ holds for some ψ′ ∈ HomR(X,Y ). We

get ϕ = 1E⊗G⊗F ⊗ ψ′. Finally b1 ∈ G′ and Rb1 ⊗X∗ ⊆ Rb1 ⊗ F ⊗X imply

X∗ψ ⊆ Y ∗. By Lemma 4.1, ψ′ ∈ HomA(X,Y ) and ϕ = 1E⊗G⊗F ⊗ ψ′ is an

A-homomorphism. If U 6⊆ V , then ϕ = 0 is immediate. We thus derived the
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following general result for A-modules X,Y .

HomR(MUX ,MV Y ) =





1E⊗G⊗F ⊗ HomA(X,Y ) if U ⊆ V

0 if U 6⊆ V.

If we put X = Y = A, drop A and write

MUA = MU = (M,M0
U ,M

j | 1 ≤ j ≤ 4),

this implies the following

Theorem 4.2: Let λ < κ(ω) be any infinite cardinal and A any faithful algebra

over the commutative ring R 6= 0 such that A has at most λ generators over R.

Then there exists a family of free right A5-modules

MU = (M,M0
U ,M

1,M2,M3,M4) (U ⊆ λ),

whereM,M0
U ,M

j ,M/M0
U ,M/M j are free A-modules of rank λ for all 1 ≤ j ≤ 4

such that

HomR(MU ,MV ) =




A if U ⊆ V

0 if U 6⊆ V.

holds in any generic extension of the universe.

Remark 4.3: We note that if we form the modules MU = MUA′ in Theorem 4.2

for an algebra extension A′ of A rather than for A, then the arguments above

lead to a strengthening of Theorem 4.2, as noticed and shown in [14, pp. 38–41]

in a parallel case:

Let A ⊆ A′ be an R-algebra extension satisfying the cardinality condition of

Theorem 4.2 for A′ and let MU be the A5-module from above, then

MU⊗RA
′ = (M⊗RA

′,M0
U⊗RA

′,M1⊗RA
′,M2⊗RA

′,M3⊗RA
′,M4⊗RA

′),

(U ⊆ λ)

satisfies Theorem 4.2 with A′ in place of A.

5. Passing to R-modules

In this final section we now apply our results to various special cases to claim

absolute properties and to strengthen known results in the literature. First we

assume that there are enough primes (or other objects needed) in the ring, and

finally we discuss other cases, including quasi-local rings.
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We start with the case where the R-algebra A admits particular modules.

Definition 5.1: Given an R-algebra A and a natural number n we say that the

family

(X,Xj, X | j < n)

is almost fully rigid (for A) if the following properties hold:

(i) X ⊂ X are faithful A-modules;

(ii) X ⊂ Xj ⊂ X for j < n;

(iii) X =
⋂

j<n X
j and X =

∑
j<n X

j;

(iv) {φ ∈ EndR X : Xjφ ⊆ Xj ∀j < n} = A;

(v) HomR(Xj , Xk) = 0 if j, k < n and j 6= k.

For suitable numbers n and algebras A these modules are used to create

distinguished submodules by making them fully invariant. Notice that Defini-

tion 5.1 is weaker than a fully rigid system in the sense of Corner [6].

Recall that a family of A-modules MU (U ⊆ λ) is A-rigid for some R-algebra

A if

HomR(MU ,MV ) =




A if U ⊆ V

0 if U 6⊆ V.

We will say that it is absolutely A-rigid if it is A-rigid in any generic extension

of the universe. Evidently, the modules in an absolutely A-rigid system are

absolutely indecomposable whenever A has no idempotents 6= 0, 1.

Several applications are based on the following lemma.

Lemma 5.2: Let λ < κ(ω) be any infinite cardinal. Suppose R 6= 0 is a com-

mutative ring admitting an R-algebra A with a family of A-modules satisfying

Definition 5.1 for n = 5. For every infinite cardinal λ (for which A is at most λ-

generated), there exists an absolutely A-rigid family of A-modules MU (U ⊆ λ)

of cardinality λ.

Proof. We use the free right A5-modules MU = (M,M0
U ,M

1,M2,M3,M4)

for U ⊆ λ as stated above in Theorem 4.2, where M j = W j ⊗ (F ⊗ Xj) ⊆

E ⊗G ⊗ (F ⊗X) with the crucial submodule M0
U = M0

X0U ⊆ E ⊗G⊗ F ⊗X

from (4.1). Set

MU = M0
U +

∑

1≤j≤4

M j ⊆ E ⊗G⊗ F ⊗X.
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Next we consider the case U ⊆ V ⊆ λ, and let ξ be a homomorphism mapping

MU into MV . From Definition 5.1(v) it follows that ξ has to map each of the

submodules M j into M j for 1 ≤ j ≤ 4 and similarly M0
U into M0

V . We can

view ξ as a map

(M,M0
U ,M

1,M2,M3,M4) → (M,M0
V ,M

1,M2,M3,M4).

By Theorem 4.2 and Definition 5.1(iv) the map ξ acts as scalar multiplication

by an element from A. If U 6⊆ V , then by a similar argument we have ξ = 0.

Thus {MU : U ⊆ λ} is an absolutely A-rigid family.

Next we apply this lemma to special cases. In each case, we have to specify

how the algebra A and the A-modules in Definition 5.1 have to be chosen.

Case A: Let R be a domain with at least 4 prime elements p1, p2, p3, p4 that

are pairwise comaximal, i.e. Rpj + Rpk = R if j 6= k. Consider the following

R-submodules of the quotient field Q of R:

X0 = p−∞
1 p−∞

2 R, X1 = p−∞
1 p−∞

3 R, X2 = p−∞
1 p−∞

4 R, X3 = p−∞
2 p−∞

3 R,

X4 = p−∞
2 p−∞

4 R

(where the symbol p−∞ is an abbreviation for
⋃

k<ω p
−k). It is straightforward

to see that conditions in Definition 5.1 are satisfied with A = R = X , so we can

apply the preceding lemma and claim

Corollary 5.3: If R is a domain with at least 4 pairwise comaximal prime

elements, then for every infinite cardinal λ < κ(ω), there exists an absolutely

R-rigid family of torsion-free R-modules MU (U ⊆ λ) of cardinality λ.

Case B: Let R = Z and X = Z, X = H , where H ⊂ Qa0 ⊕ · · · ⊕Qa4 is a rank

5 indecomposable torsion-free group (of Pontryagin type), constructed e.g. as in

Fuchs [10, p. 125, Example 5], by using algebraically independent p-adic units

πj (j ≤ 4). We set Xj = H∩(Qa0⊕Qaj), and observe that all these groups are

indecomposable and homogeneous of type Z; furthermore, their endomorphism

rings are Z. It is easily seen that conditions in Definition 5.1 will be satisfied,

so we can conclude

Corollary 5.4: For every infinite cardinal λ < κ(ω), there exists an absolutely

Z-rigid family of homogeneous torsion-free abelian groups MU (U ⊆ λ) of type

Z and of cardinality λ.
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Let us point out that the preceding two examples can be easily extended to

the case where the endomorphism rings of the modules are isomorphic to A, for

algebras A considered.

Case C: Let R be a domain with quotient field Q such that Q/R has a sum-

mand of the form

X/R = X0/R⊕X1/R⊕X2/R⊕X3/R⊕X4/R

with non-zero components. From Fuchs-Salce [11, p. 504] it follows that the

hypothesis of Definition 5.1 is satisfied with A = R and X = R. Hence we can

state

Corollary 5.5: If R is an infinite domain such that Q/R has a summand

as stated, then for every infinite cardinal λ < κ(ω), there exists an absolutely

R-rigid family of torsion-free R-modules MU (U ⊆ λ) of cardinality λ.

The hypotheses of the preceding corollary are satisfied, for instance, by an

h-local domain with at least 4 maximal ideals if we modify the construction

following the pattern of Case A.

Case D: Let R = Z and assume X is a torsion-free abelian group with endo-

morphism ring A. We may view X as a right A-module. Assume there are four

primes pj (j < 4) for which X is reduced, i.e.
⋂

k<ω p
k
jX = 0 for each j < 4.

Define

Xk,` = p−∞
k p−∞

` X

as a subgroup in the divisible hull Q⊗X of X , where the pair (k, `) ranges over

the 2-element subsets of {0, 1, 2, 3}. Evidently, conditions in Definition 5.1 are

satisfied, so we can claim

Corollary 5.6: Let X be a torsion-free abelian group with endomorphism

ring A such that X is reduced for at least 4 primes. Then for every infinite

cardinal λ < κ(ω), there exists an absolutely A-rigid family of torsion-free

groups MU (U ⊆ λ) of cardinality λ.

Let R be a commutative ring and p ∈ R a non-zerodivisor of R such that the

p-adic topology on R is Hausdorff. Assume that A is an R-algebra which is a

p-pure submodule between R and its p-adic completion R̂, so that Â = R̂. We

also assume that R̂ has transcendence degree at least 5 over A. Thus, there exist
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πγ ∈ R̂ (γ ∈ I) with |I| ≥ 5 which are algebraically (or at least quadratically)

independent over A.

Remark 4.3 ensures the existence of an R5-module

M = (M,M0,M1,M2,M3,M4)

of rank λ < κ(ω) with EndM = A such that M̃ = M ⊗R Â satisfies also

End M̃ = Â. Now M̃ = M ⊗R Â, M̃ i = M i ⊗R Â, and note that M̃ ⊆ M̂ holds

for the p-adic completion M̂ of M .

Using five algebraically (or quadratically) independent elements πj ∈ R̂

(j ≤ 4), we form the R-module

H = 〈M,πjM
j | j ≤ 4〉∗ ⊆

⊕

λ

Â,

the p-purification of 〈M,πjM
j | j ≤ 4〉 in

⊕
λ Â.

Theorem 5.7: For a p-pure subalgebra A of R̂ with the indicated notation,

EndRH = A holds absolutely.

Proof. Let Hj = πjM
j
∗ be the purification of M j in M̃ for j ≤ 4. If h ∈

H ∩ πjH , then there are relations pnh = x +
∑

i πixi = πj(x
′ +

∑
i πix

′
i) for

some x, xi, x
′, x′i ∈M and n ∈ N. Thus x+

∑
i πixi = πjx

′ +
∑

i πjπix
′
i. Recall

that M is a free A-module, thus (looking at restrictions of the last equation

to A-summands) the quadratic independence of the πis over A guarantees that

x′i = 0 for all i. Hence the last equation becomes x +
∑

i πixi = πjx
′, which

implies that x = 0, xi = 0 for all i 6= j and xj = x′. We derive pnh = πjx
′ ∈M j

and h ∈ Hj . This shows that H ∩πjH = Hj for j ≤ 4. We may assume that πj

are unit elements, so for a basic element e ∈ M j , we have eπj ∈ Hj and eπjA

is pure in Hj . It follows that eÂ ∩Hj = eπjA.

Finally, consider φ ∈ EndR H . By continuity, φ admits a unique extension

to an endomorphism φ̂ of M̂ which is an R̂-homomorphism. We now consider

φ̃ = φ̂ � M̃ . If we write M =
⊕

i∈λ eiA, then M̃ =
⊕

i∈λ eiÂ, so M ⊂ H ⊂ M̃

implies that eiφ ∈ M̃ . From Â = R̂ it follows for the R̂-homomorphism φ̃ that

eÂφ̃ ⊆ eφ̃Â, and hence we obtain M̃φ̃ ⊆ M̃ .

From our first argument it follows that Hjφ ⊆ Hj for all j ≤ 4. Thus

H̃j φ̃ ⊆ H̃j by topological closure. This implies φ = a ∈ Â in view of End M̃ = Ã.

Now pick eπ1 as above. Then eπ1φ̃ = eπ1a ∈ eÂ ∩H1 = eπ1A, and therefore

also φ̃ ∈ A, completing the proof.
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We now illustrate cases where the hypotheses of the preceding theorem are

satisfied.

Case E: Let R = Z, furnished with the p-adic topology for a prime number

p. In the ring Jp of the p-adic integers choose a pure subring A ⊇ Zp such

that there are at least 5 algebraically independent elements (in Jp) over A —

this condition is certainly satisfied whenever A is countable. In view of the

preceding theorem we can state

Corollary 5.8: Let A be a pure subring of the p-adic integers as stated. For

every infinite cardinal λ < κ(ω), there exists an absolutely A-rigid family of

A-modules MU (U ⊆ λ) of cardinality λ.

Case F: Let R be a commutative ring of cardinality < 2ℵ0 , and S a countable

multiplicatively closed subset of regular elements of R. Assume A is an R-

algebra with |A| < 2ℵ0 that is S-reduced (i.e.,
⋂

s∈S sA = 0) and S-torsion-free

(i.e., sa = 0 for some s ∈ S, a ∈ A implies a = 0) such that A is an S-pure

submodule between R and the S-completion R̃ of R. It follows from Göbel–

May [13, p. 216, Theorem] that the S-completion R̃ of R contains elements

πγ (γ < 2ℵ0) that are algebraically independent over A. Consequently, we have

Corollary 5.9: Let R,A be as stated. Then for every infinite cardinal λ <

κ(ω), there exists an absolutely A-rigid family of A-modules MU (U ⊆ λ) of

cardinality λ.

Case G: Suppose R is a quasi-local ring with maximal ideal P such that⋂
n<ω P

n = 0. If the completion R̃ of R in the P -adic topology contains at

least 5 algebraically independent units over R, then Theorem 5.7 applies, and

we are led to the following conclusion

Corollary 5.10: Let R be a quasi-local ring as stated. Then for every infi-

nite cardinal λ < κ(ω), there exists an absolutely R-rigid family of R-modules

MU (U ⊆ λ) of cardinality λ.
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[14] R. Göbel and W. May, Four submodules suffice for realizing algebras over commutative

rings, Journal of Pure and Applied Algebra 65 (1990), 29–43.
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